Learning Auto-regressive Models from Sequence and Non-sequence Data
نویسندگان
چکیده
Vector Auto-regressive models (VAR) are useful tools for analyzing time series data. In quite a few modern time series modelling tasks, the collection of reliable time series turns out to be a major challenge, either due to the slow progression of the dynamic process of interest, or inaccessibility of repetitive measurements of the same dynamic process over time. In those situations, however, we observe that it is often easier to collect a large amount of non-sequence samples, or snapshots of the dynamic process of interest. In this work, we assume a small amount of time series data are available, and propose methods to incorporate non-sequence data into penalized least-square estimation of VAR models. We consider non-sequence data as samples drawn from the stationary distribution of the underlying VAR model, and devise a novel penalization scheme based on the Lyapunov equation concerning the covariance of the stationary distribution. Experiments on synthetic and video data demonstrate the effectiveness of the proposed methods.
منابع مشابه
Multivariate Spatial Statistical Analysis of Longitudinal Data in Perennial Crops
The advantages of using spatial analysis in annual crop experiments are well documented. There is much less evidence for perennial crops. For the sequence of measurements in perennial crops, apparently, there are no published articles in spatial analysis to date. This paper aimed at the comparison of several models, including auto-regressive, ante-dependence and character process models, in mod...
متن کاملGraphical Models for Human Motion Modelling
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. To automate the process of motion modeling we consider a class of learned dynamic models cast in the framework of dynamic Bayesian networks (DBNs) applied to analysis and tracking of the human figure. While direct learning of DBN parameters is possible, Bayesian learning formalism suggests that ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملExploiting Non-Sequence Data in Dynamic Model Learning
Virtually all methods of learning dynamic models from data start from the same basic assumption: that the learning algorithm will be provided with a single or multiple sequences of data generated from the dynamic model. However, in quite a few modern time series modeling tasks, the collection of reliable time series data turns out to be a major challenge, due to either slow progression of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011